Monday

1) $a+b+c=$
2) $\mathrm{c}-\mathrm{a}=$
3) $2 a=$
4) $3 d=$
5) $2 c+d=$
6) $3 a+2 b=$
7) $4 b-3 a+c=$
8) $a+b+c+d=$
9) $d+b^{2}=$ 10) $3 c+3^{2}=$ 11) $d^{2}-c^{2}=$ 12) $a^{3}-a^{2}=$

Extension
a) $\boldsymbol{\nabla} \div 3=12 \div 2$
b) $\boldsymbol{\theta}^{2} \times \boldsymbol{\bullet}=27$
c) $4 x{ }^{2}=16$
d) $24-*=16+*$
e) $3(\star+\star+\star)=18$
f) $5 \bullet=3 \bullet+10$

Wednesday

Find at least 2 pairs for each

1) $a+b=10$
2) $c+d=12$
3) $e+f=28$
4) $g+h=13$
5) $\mathrm{c} x \quad \mathrm{a}=24$
6) $2 a=b$
7) $e+t=49$
8) $f x s=20$
9) $y=m^{2}$
10) $b \div c=5$

Extension

$$
p k=60 \text { and } k-p=11
$$

$\mathrm{m} \times 2 \mathrm{n}=36$ and $\mathrm{n} \div \mathrm{m}=2$
$3 f \div h=9$ and $f+2 h=35$

Thursday

Find the 10th, 20th and 100th term for each of these sequences

Nth term formula

1) $3,6,9,12,15$,
(3n)
2) $2,6,10,14,18$
($4 \mathrm{n}-2$)
3) $3,9,15,21,27$,
($6 \mathrm{n}-3$)
4) $25,35,45,55,65$,
(10n + 15)
5) $3,8,13,18,23$,
(5n-2)
6) $17,25,33,41,49,(8 n+9)$
7) $3,15,27,39,51$, $(12 n-9)$
8) $16,36,56,76,96,(20 n-4)$

Find the formula for the nth term for each sequence

1) $\mathbf{0}, \mathbf{3}, \mathbf{6}, \mathbf{9}, \mathbf{1 2}, \ldots$

$$
\text { 3) } 11,14,17,20,23, \ldots
$$

$$
\text { 4) }-2,0,2,4,6, \ldots
$$

$$
\text { 5) } \mathbf{7}, \mathbf{8}, \mathbf{9}, \mathbf{1 0}, \mathbf{1 1}, \ldots
$$

$$
\begin{aligned}
\text { nth term } & =\square \\
\text { nth term } & =\square
\end{aligned}
$$

Friday

